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Abstract — This paper introduces a new super-resolution 

algorithm based on machine learning along with a novel 

hybrid implementation for next generation mobile devices. The 

proposed super-resolution algorithm entails a two 

dimensional polynomial regression method using only the 

input image properties for the learning task. Model selection 

is applied for defining the optimal degree of polynomial by 

adopting regularization capability in order to avoid 

overfitting. Although it is widely believed that machine 

learning algorithms are not appropriate for real-time 

implementation, the paper in hand proves that there are 

indeed specific hypothesis representations that are able to be 

integrated into real-time mobile applications. With aim to 

achieve this goal, the increasing GPU employment in modern 

mobile devices is exploited. More precisely, by utilizing the 

mobile GPU as a co-processor in a hybrid pipelined 

implementation, significant performance speedup along with 

superior quantitative results can be achieved.
1
. 

 
Index Terms — Polynomial regression, super-resolution, 

general-purpose GPUs, hybrid implementation. 

I. INTRODUCTION 

The super-resolution task refers to the process of 

constructing a High-Resolution (HR) image from a Low 

Resolution (LR) one, often acquired by inexpensive mobile 

device imaging sensors. Many applications use this process as 

their core algorithm for tasks such as enhancing image spatial 

resolution, synthetic zooming of region of interest, mosaicing 

and image restoration. 

Traditional analytic approaches include Cubic spline 

interpolation, sharpened Gaussian interpolator functions, 

wavelet-based methods and fractal interpolation [1]-[3]. 

However, these approaches can often suffer from perceived 

loss of detail in textured regions mainly because of their 

incapacity to recover the high-frequency components which 

where degraded during the low-resolution sampling process. 

Furthermore, static function methods are limited to their 

domain space, and all image properties may not be well 

projected to the HR image. 

Modern approaches however, have introduced learning 

based methods including a training phase in the overall 
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process. Freeman et al. [4] treated super-resolution as a 

learning problem of estimating high-frequency components. 

This was achieved by learning the fine details which 

correspond to different image regions seen at low-resolution 

example images and then using those learned relationships to 

predict fine details in other images. Machine learning super-

resolution, also known as example-based super-resolution, has 

been also introduced to numerous recent algorithms with very 

promising results [5], [6] yet, their main trade-off hides in their 

demanding learning phase making them inappropriate for real-

time applications. 

An increasing subset of machine learning methods for 

super-resolution are those that use regression in order to learn 

the relationships between the LR and HR images by utilizing 

high-dimensional feature space. Support vector regression has 

been applied in the work of Ni and Nguyen [7], where the 

kernel learning problem was formed as a convex optimization 

problem. After finding the optimal kernel, the output pixel of 

the HR image is calculated by applying support vector 

regression in multiple patches, thus solving the multiple output 

regression problem as separate single output regressions. 

Iterative steering kernel regression as proposed in the work of 

Takeda et al. [8] is used for estimating locally adaptive 

regression functions. An iterative regression/denoising 

procedure is used to exploit the HR image local properties by 

estimating radiometric terms in two dimensions for each 

iteration. 

The super-resolution machine learning algorithms are 

considered highly computationally intensive processes mainly 

because of the utilization of high-dimensional feature space. 

However, they underlie a great level of parallelism which can 

be of very practical use, when explored along with the recent 

availability of General Purpose Graphic Processing Units 

(GPGPUs). The computing capability offered by the GPUs can 

report speedups ranging from several times to hundreds of 

times depending on the application especially in image 

processing applications [9]. However, these figures apply only 

for desktop GPUs since mobile GPUs are often designed with 

power consumption rather than performance as their primary 

goal [10]. Current mobile device architectures employ 

powerful CPUs along with relevant limited GPU resources 

leading to potential bottlenecks. 

In this paper, a novel super-resolution algorithm is 

presented, based on two dimensional polynomial regression 

using only the input image properties for the training phase. 

The method is improved by adopting a learning algorithm with 

regularization capability to avoid overfitting. The parallel 

characteristics of both the machine learning algorithm and 

super-resolution are addressed to achieve throughput 



 

 

performance in a mobile device implementation. A proposed 

hybrid architecture is also employed to distribute the 

computations on both CPU and GPU in a pipelined scheme as 

to exploit the most of the available computational power of the 

mobile device [11]. 

The following section discusses related works on GPU 

implementations for the super-resolution problem. The 

proposed polynomial regression method is discussed in 

Section III. The hybrid implementation in a mobile device is 

presented in Section IV. Experimental results on both real and 

synthetic data are presented in Section V, along with their 

timing performance. Section VI concludes the paper. 

II. RELATED WORKS 

In this section, relevant super-resolution implementations 

will be presented. It must be noted that while there are many 

implementations in specific hardware devices like FPGAs 

[12], [13], DSPs [14] and ASICs [15], the interest in 

implementations in GPUs seems to be picking up significantly 

in recent years. However, mobile device implementations for 

super-resolution using regression are very limited, thus the 

discussion will be covered in two categories. The first category 

will include GPU implementations of single function and 

kernel for super-resolution, whereas the second category will 

present various super-resolution implementations that entail 

machine learning regression on GPUs. 

A real-time high-quality image upscaling algorithm has been 

proposed by Giachetti and Asuni [16], based on the iterative 

smoothing of second-order derivatives. Two filling steps are 

required and performed by first computing local 

approximations of the second-order derivatives along the two 

diagonal directions, using eight-valued neighboring pixels. 

Interpolated values are modified in the second iterative 

procedure by trying to minimize an energy function. A 

graphics processing unit implementation has been proposed for 

obtaining real-time results. Another high-quality and efficient 

single-image upscaling technique using patches from 

extremely localized regions of the input image is proposed in 

the work of Freedman and Fattal [17]. This work exploits the 

local scale invariance of natural images where it is pointed out 

that small patches are very similar to themselves upon small 

scaling factors. The parallel nature of the proposed algorithm 

was appropriately utilized allowing a video upscale from 640  

360 to 1920  1080 at 23.9 frames per second. A framework 

involving two rendering cycles for scaling videos in mobile 

devices has been recently proposed by Singhal et al. [18]. The 

first cycle is used to obtain the interpolated frame using 

bilinear interpolation, and the other cycle is used for a 

sharpening filter. Real-time performance was reported 

achieving a rate of full 35 frames per second at 560  420 

resolution. 

Since all the aforementioned implementations do not 

include regression in their core algorithms, a second category 

of related works is presented, where the GPUs are used as 

computing nodes for calculating super-resolution kernel 

regression problems. Both local and non-local kernel 

regression is applied for super-resolution in the work of Wang 

and Chan [19], where the local polynomial coefficients are 

obtained by weighted least squares. The proposed adaptive 

kernel construction and regression were both implemented on 

GPU, however some modifications were performed, since the 

computation at each pixel was too complicated to be run 

entirely in the computing units of the GPU. Hence, some steps 

were divided into subtasks and assigned to the CPU. This 

architecture dramatically reduced the processing time in 

reasonable levels. Finally, a bilateral filtering method was 

developed by Yang et al. [20] for a normalized convolution, in 

which the weighting for each pixel is determined by the spatial 

distance from the center pixel as well as its relative difference 

in intensity. This non-uniform mapping function was learned 

via support vector machine regression using the feature vectors 

and the corresponding bilateral filtered values of the training 

image. The GPU implementation of the method reported a rate 

of about 473 frames per second on a 1MB grayscale image. 

III. POLYNOMIAL REGRESSION FOR SUPER-RESOLUTION 

The proposed method relies in a limited amount of 

information using only the high frequency patches of the LR 

image. The HR reconstruction is partitioned according to these 

patches, decreasing the problem complexity per image patch 

allowing parallel implementation of the whole process. Unlike 

example-based super-resolution approaches which require long 

training phases using natural image prior [21], [22] the 

proposed method applies training phase only at the LR image 

patches. From the consumer electronics view, this non time 

consuming training phase with less computational burden is 

very important for fast applications, however at the same time 

the quality of high-frequencies in the HR image must be 

sufficiently maintained. The estimation of high-frequency 

details in the current work is faced as a supervised machine 

learning problem which is resolved using a bivariate 

polynomial regression. The quality attribute of high-

frequencies is defined by the regularization of the regression 

framework [23], as it will be discussed thoroughly in the next 

sections. The challenge is even greater when limited amount of 

training data are available for the training phase since the 

regression might interpolate poorly on nontraining data. To 

overcome these challenges a convex combination of regressors 

based on their cross validated confidence is applied in the 

current work along with a neighborhood exploitation for 

selecting the training data points. 

A. Preprocessing Based on L
2
 and L

∞
 Norms 

Adopting the general framework of Freeman et al. [4], for 

the super-resolution task, the LR image (X), is first scaled in 

the desired factor by applying cubic spline interpolation. The 

HR image (SX) is missing its high-frequency details which are 

going to be learned and estimated, based on the frequency 

components of the LR image (X). The regression output image 



 

 

 
Fig. 1. Example of the preprocessing part: a. Laplacian result, b. Post-

processed result based on the intersection of thresholded L2(
2X) and 

L∞(
2X) patches (α=0.5 and β=0.4).  

 

can subsequently be added to SX to produce the final super-

resolved image. The cubic spline interpolated image SX, 

suffers from smoothing and blurring in major edges since the 

cubic B-spline basis is a nonnegative function. Applying 

regression throughout the whole image region could lead to 

several drawbacks such as degraded results in textured areas 

where the contrast is low, as well as increasing the 

computational complexity of the proposed framework. 

A local regression will be applied only to patches of the 

major edges and their vicinities of the (X) where the high 

spatial frequency components are present. The definition of a 

major edge is in general distinct from the object contour, 

where the intensity variations are negligible across the 

boundaries. The vicinities of the edges were also included 

since in many super-resolution algorithms oscillation occurs 

near the strong edges of the HR image in order to compensate 

the resulting loss of smoothness. 

For finding the major edges and their vicinities, a 

thresholding for each patch is applied to L
2
 and L

∞
 norms of 

the Laplacian image X(i,j), where i 1,2,…,M, j1,2,...,N, as 

follows: 
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where, Kℓ, K2, K∞ nn , are the Laplacian kernel and L
2
 and 

L
∞
 norms, respectively. For all the q and l patches 

2L
P  and 

L
P  

of images L
2
(

2
X) and L

∞
(

2
X) respectively, the following 

subsets are defined as: 

 q

LLL
pPC 222 :        (4) 

 

l

LLL
pPC :        (5) 

where α and β are the threshold values. Finally, the LR image 

patches that the regression will be applied is defined as the 

intersection of both subsets 
LL

CC 2
. 

Fig. 1(a), depicts the result of the applied Laplacian kernel 

on the initial ‘cameraman’ image, whereas Fig. 1(b) shows the 

post-processed result of the L
2
(

2
X) and L

∞
(

2
X) norms 

intersection on the Laplacian image. It can be seen that half of 

the back of the cameraman with the ground is not detected as 

major edge as the intensity variations are not significant across 

that boundary. Since the regression result in such boundaries 

does not produce visible oscillation of the pixel values [24], 

local regression will be applied only to the selected edge 

patches in order not to introduce additional computational 

burden in the mobile device. 

B. Kernel Learning for Polynomial Regression 

The proposed super-resolution approach can be considered 

as a supervised learning problem using regression analysis for 

the real valued output of the HR image pixels from an nn  

LR image patch. Each LR image patch becomes an 22 n  

dimensional matrix of training examples. The 2-D bivariate 

polynomial regression is applied for fitting the interpolated 

values, with the hypothesis given by the polynomial model 

  xTxh   , where the matrix x includes all the k degree 

polynomial terms xi+s and xj+t and θ
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respectively. Selecting the appropriate degree of polynomial 

for the hypothesis is critical in order to avoid overfitting or 

underfitting situations. Other approaches suggest a linear 

combination of other functions such as Legendre or Hermite 

polynomials, however this would dramatically increase the 

computational complexity of the algorithm. High order 

polynomials have proved to present adequate fitting results 

and have been also used in many analytic interpolation 

techniques. 

The regularized cost function to be minimized is the 

following: 
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where m corresponds to the number of training examples in 

each image patch and λ is the regularization parameter. The y 

vector contains the center pixel value of the LR image patch. 

To minimize J, its derivatives are set to zero, and the 

following normal equations are obtained [25]: 
T T y x x x         (7) 

where, y


 is the n
2
-dimensional vector containing all the target 

values from the training set, and x is the n
2
 matrix that contains 

the training example input values. The value of θ that 

minimizes J(θ) is given in closed form by the following 

equation: 
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For minimizing the cost function, normal equations were 

chosen instead of gradient descent since they enable solving 

small linear systems very quickly when the training set is 

limited and bounded. Furthermore, the required for the normal 

equations calculation of the pseudo-inverse matrix using 

singular value decomposition is suitable for parallel 

processing, which will be exploited with the use of the GPU in 

the next section. 

The rank of the chosen polynomial exerts a critical effect on 

how the regression will fit to the training data. More precisely, 

when a high order polynomial is selected overfitting might be 

introduced, resulting into a high variance or noisy 

supperresolution results. A low order polynomial however, 

might introduce blurring effects due to the high bias 

introduced by the regression process [26]. This model 

selection problem is improved by the regularization capability 

of (6). For each training patch a single polynomial is selected 

based on the cross validation criterion. The cross validation 

criterion between several tested regularization parameters λ 

can indicate poor performance in both high variance or high 

bias cases by evaluating the hypothesis from cross validation 

examples as: 
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where mcv is the number of cross validation dataset and ycv and 

xcv are the cross validation subsets of y and x, respectively. 

C. Convex Combination of Polynomials 

After the regression part, for each center pixel of the input 

patches a single polynomial has been chosen. However, since 

the input patches are overlapping with their neighbors, 

neighboring pixels may be fitted with different polynomials 

since they have been trained with partially different local 

training examples. These different local training examples 

contain different partial spatial information of the input image. 

Based on the selection of the training examples for each image 

patch, and due to the stochastic random selection, relatively 

high training errors might be seen when the training candidates 

are not selected uniformly in the spatial domain leading to a 

non optimal fitting as shown in Fig. 2(a). To avoid this 

drawback, the neighborhood context of each input pixel is 

exploited. Thus, the final estimation for each HR pixel is 

calculated as a convex combination of polynomial candidates 
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Fig. 2. 2-D fitting example in image patch: a. Without convex 

combination of polynomials, b. After convex combination of polynomials 

(n=7, σc=500).  

 

and σc being a weight parameter, s the scaling factor, 

and     yxJyxJ l

testtest ,,...,,1  the generalization error for each 

test set of the l≤n
2
 polynomial candidates. As it can be seen in 

Fig. 2(b), the use of the convex combination of polynomial 

candidates can efficiently single out the outliers, since the 

candidates contain diverse spatial information of the input 

image patches providing a better fitting. 

Tuning of the hyperparameters is based on the trade-off 

between computational complexity and super-resolution 

quality. Increasing the parameters α and β result in fewer 

selected patches decreasing the runtime complexity but also 

decreasing the quality of the super-resolved image. A similar 

tendency is detected when decreasing the parameter n since 

smaller image patches lower the computational burden but at 

the same time deteriorate the quantitative results. Furthermore, 

all hyperparameters are independent of the selected scaling 

factor as they are applied on the input image, thus any decimal 

scaling factor can be applied in the proposed method. As it 

will be discussed in the experimental results section, the 

optimization of the parameters were performed based on rough 

estimations [5] and then a fixed set of candidates were fully 

validated. 

IV. HYBRID IMPLEMENTATION IN MOBILE DEVICE 

The proposed hybrid implementation is based on accurate 

pipelined calculation assignment to both available processing 

units of the mobile device with respect to their capabilities, 

trying to accelerate the overall timing execution performance. 

CPUs in mobile devices exist in the scene for many years and 

they have been optimized in terms of memory accesses, thread 

handling, and performing complex calculations on a single 

stream. Recently, mobile devices have also integrated GPUs in 

the overall architecture, which are perfectly suited for 

performing relatively more complex and independent 

calculations on very large datasets, because of their massive 

parallelization while offering significant power efficiency [27]. 

By commissioning the CPU with dependent tasks on small 

datasets, like multiplications of small matrices and data 

transferring, and by assigning to the GPU calculations over 

large datasets, better acceleration timing results can be 

achieved. The rest of this section is focused on how these 

different processes of the proposed super-resolution algorithm 

were assigned to each processing unit, with their equivalent 



 

 

 
Fig. 3. (a) The Hybrid Implementation Flowchart (b) The Hybrid Implementation Pipelining. By splitting the overall algorithm and assigning different 

parts to two separate resources enables the pipelining of the procedure. The experimental results have confirmed that for systems armed with 

powerful CPUs compared to their GPUs abilities, the proposed pipeline approach succeeds a reduction of the overall execution time compared to the 

CPU-only or GPU-only implementation. 

 

implementations. Discussion of the most computationally 

intensive parts of the proposed method, such as the input 

image major edge extraction, the polynomial hypothesis 

calculation for each edge patch and the convex combination 

ofpolynomial candidates is also given in the following 

subsections. 

A. Preprocessing 

The preprocessing stage encloses the calculation of the 

Laplacian of the image and the application of L
2
 and L

∞
 norms. 

Those implementations are assigned to the GPU, as they are 

referred to the whole image, giving the opportunity for great 

parallelization. The calculation of the image Laplacian is 

translated into applying the convolution kernel described in (1) 

to the whole input image. Since every pixel in the input image 

has to be accessed multiple times, the image data are stored in 

the device texture memory. Texture memory is a cashed, read-

only device memory able to improve performance and reduce 

memory traffic when readings have certain access patterns. 

One GPU thread per input pixel is able to access all 

neighboring values efficiently, regardless the memory storing 

pattern of the image data [28], thus accelerating the application 

of the Laplacian kernel. 

With the Laplacian image stored, the L
2
 and L

∞
 norms are 

computed as follows. The L
2
 norm of each p input image patch 

is calculated as: 
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22 ,      (12) 

The challenge here is to compute the sum efficiently taking 

advantage of the fact that every summation region overlaps 

with its neighbors [29]. Thus, s×t threads accumulate the same 

    2/,2/2 tsp  value to the whole corresponding [s,t] 

neighborhood of the L
2
 norm output. In order to prevent 

multiple threads from accumulating simultaneously values in 

the same memory address, a sliding windows based approach 

is adopted. The amount of windows applied on an image is 

M/s in the horizontal order and N/t in the vertical and their 

dimensions are s by t, in respect with the number of threads 

consist them. Performing s×t iterations of the above mentioned 

algorithm by sliding all windows by one (s times in vertical 

order and t in horizontal) and synchronizing the threads every 

time, the overall accumulation is accomplished without any 

memory access congestion. 

A similar approach is adopted for calculating the L
∞
 norm:  

    jippL ,max 2
       (13) 

where i1,2,3,...,s and j1,2,3,...,t. In this operation instead 

of accumulating the  jip ,2  values, the values are compared 

in order to find the maximum. 



 

 

B. Polynomial Regression 

The most computationally intensive part of the super-

resolution regression analysis is the calculation of the 

necessary for the normal equations pseudo-inverse matrix 

using the Singular Value Decomposition (SVD). In particular, 

the pseudo-inverse matrix has to be evaluated for each λ of the 

chosen range in order to avoid overfitting. Therefore, for every 

λ the GPU is assigned with the necessary calculation of U, S 

and V matrices of the SVD. The CPU on the other hand, is 

responsible for evaluating the pseudo-inverse matrix and 

calculating the hypothesis [30]. Since both tasks are performed 

for multiple λ, the opportunity for a pipeline based system 

arises [11]. For each λi in the list, while the GPU calculates a 

new set of the Ui, Si and Vi matrices, the CPU calculates the 

hypothesis for λi-1 having as input the set of the respective Ui-1, 

Si-1 and Vi-1 matrices. Using this method, which is depicted in 

Fig. 3, a great acceleration is achieved by exploiting the 

parallel computational power of the GPU and the simultaneous 

computations on the CPU, which otherwise the last would stay 

idle. Furthermore, calculation assignment in both CPU and 

GPU was evaluated against their respective average execution 

times, since the approximately same execution times would 

lead to an optimal performance. 

C. Combination of Polynomials 

The final stage of the proposed implementation incorporates 

the weighted summation of the polynomial hypotheses from 

the overlapping patches. This task is a suitable candidate for 

the GPU as it contains numerous but simple calculations. For 

every evaluated hypothesis, the assigned number of GPU 

threads are the same as the number of the hypothesis 

coefficients. Each one of these threads is responsible for 

checking whether or not the neighbor pixels corresponds to an 

edge (that is, they own a hypothesis) and then, deciding to 

accumulate the corresponding weighted coefficient, resulting 

to the final hypothesis. 

V. EXPERIMENTAL RESULTS 

The experimental results section includes evaluations for both 

quantitative and timing comparisons utilizing the diverse 

content image dataset of Fig. 4. The under comparison 

algorithms include a non-parametric regression algorithm [8] 

based on steering kernel regression (SKR), a two rendering 

cycle (2RC) scaling algorithm which was also implemented in 

a mobile device [18], two example based methods utilizing 

soft information (SIEB) [31] and structure analysis (SAEB) 

[32], respectively, and finally a super-resolution algorithm 

with non-local kernel regression (NLKR) [19], where the local 

polynomial coefficients are obtained by weighted least 

squares. The selected state-of-the-art algorithms were chosen 

mainly because of their reported GPU implementations and the 

regression characteristics that they include. 

Fig. 5 and Fig. 6 show the six different HR images of the 

noisy ‘Parrot’ and ‘Child’ input image for a scaling factor of 3, 

  
Fig. 4. The image dataset of diverse content used for performance 

evaluation. 

 

respectively. The proposed method presents an optimal 

balance between blurring (bias) and noise (variance). 2RC and 

SIEB methods suffer from larger smoothness whereas NLKR, 

SAEB and SKR create smooth displacements that cannot 

capture the discontinuity between strong edges. 

Despite the fact the proposed visual results show a good 

performance, it is well established that visual results fail to 

provide decisive indication of the quality of the scaled images, 

thus a quantitative evaluation was also performed.  

A. Quantitative Evaluation 

For quantitative performance evaluation, HR images 

obtained from the aforementioned state-of-the-art methods 

were compared in terms of peak signal-to-noise ratio (PSNR), 

and structural similarity (SSIM) [33], [34], [35], for assessing 

the quality of reconstruction. The evaluation procedure firstly 

builds the LR images from the reference ground truth images. 

This step includes a blurring and then a downsampling of the 

reference image by bicubic interpolation. Several works apply 

nearest neighbor interpolation for the subsampling step, 

however bicubic interpolation is naturally unbiased when 

generating low-resolution images. Finally, the HR images are 

obtained by using the different under evaluation techniques for 

upscaling the LR images to the initial corresponding sizes. 

Two of the methods [8], [19], required a slightly different 

reference images in terms of size in order to compensate the 

slightly different zoom factors and translation created by their 

algorithms. In the following tests, such issues were resolved by 

symmetrically replicating the pixels across image boundaries. 

For reducing the computational cost in color images, the 

images are firstly transformed to the YIQ color space and the 

proposed regression is applied only to the Y channel since both  

I and Q channels include low frequency information. Finally, 

the bicubic interpolation of these two chromatic channels is 

combined with the Y channel to form the super-resolved image. 

The HR reconstruction results of PSNR and SSIM for a 

scaling factor of 2 for the image dataset of Fig. 4, are 

presented in TABLE I and TABLE II, respectively. The 

selected parameters used in the presented results are α=0.5 and 

β=0.4 for the L
2
 and L

∞
 patch thresholds, respectively, n=7 for 

the patch size, k=4 for the polynomial degree and σC=500 for 

the weight parameter. 

 



 

 

 
Fig. 5. Super-resolution results for the noisy `Parrot' image for 3×SF (standard deviation of Gaussian noise is 5): (a) downscaled image; (b) result 

using SKR method; (c) result using 2RC method; (d) result using NLKR method; (e) result using SIEB method; (f) result using SAEB method; (g) 

result using the proposed method. 

 

 
Fig. 6. Super-resolution results for the noiseless `Child' image for 3×SF: (a) downscaled image; (b) result using SKR method; (c) result using 2RC 

method; (d) result using NLKR method; (e) result using SIEB method; (f) result using SAEB method; (g) result using the proposed method. 



 

 

TABLE I 

PSNR ( dB ) FOR DIFFERENT IMAGES FOR 2 × SR RATIO 

 

TABLE II 

SSIM FOR DIFFERENT IMAGES FOR 2 × SR RATIO 

 

 
Fig. 7. Required execution time at different image resolutions. Image size 

is N×N. 

 

 
Fig. 8. Required execution time for different polynomial orders. The 

straight dashed line indicates the real-time performance of 25 frames per 

second. 

 

 
Fig. 9. Required execution time for different scaling factors. The straight 

dashed line indicates the real-time performance of 25 frames per second. 

B. Timing Performance 

Timing experiments were performed on a development 

platform featuring a 1.3 GHz quad-core CPU and a GPU with 

a total of 96 cores running at 0.7GHz, both with 2GB of RAM. 

This platform is one of the most representative boards hosting 

two heterogeneous processors designed for mobile devices 

such as smartphones and tablets. The influence of the input 

image resolution to the performing time is depicted in Fig. 7. 

The experiments took place over the same image in many 

resolution instances in order to preserve a fare ratio of defined 

patches. It can be noted that the proposed hybrid 

implementation keeps a lower execution time than the CPU 

implementation, maintaining a relatively stable demotion 

factor. Acceleration ratio is increased with the increase of the 

image resolution since when image resolution is low, the 

computation load of GPU thread is not very high and the 

frequent thread context switch demands a lot of system 

running time. However, when the image resolution is high, the 

computation load needed by each thread is sufficient and the 

cost of context switch is reduced. 

Fig. 8 demonstrates the effect of the chosen polynomial 

degree to the execution time. The calculations occurred over 

an image of 256×256 resolution, for a scaling factor of 2. As it 

can be seen for a polynomial degree of 4, real-time executions 

can be succeeded. However, by decreasing the grade of the 

hypothesis, real-time performance can be achieved also in 

larger images. Fig. 9, illustrates the dependence of the 

execution time over various scaling factors. The relative 

limited timing variance shown in the diagram can be 

sufficiently explained by the fact that the most computationally 

intensive part of the hybrid implementation is the calculation 

of the hypothesis which occurs on the input image, which is 

independent on the resolution of the super-resolved image. 

VI. CONCLUSION 

In this paper, a novel super-resolution algorithm based on 

two dimensional polynomial regression is presented. The 

method relies on a single image learning algorithm with 

regularization capability for preventing overfitting. The 

parallel characteristics of both the regression analysis and 

normal equations are addressed to accelerate throughput 

performance in modern mobile devices. A proposed hybrid 

architecture is also employed to assign specific computations 

on both CPU and GPU in a pipelined scheme as to exploit the 

most of the available computational power of the mobile 

device. Experimental results show a fine balance between 

image quality and speed performance. 
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